FURANOHELIANGOLIDES FROM HELIANTHUS SCHWEINITZII

JONATHAN GERSHENZON and TOM J MABRY

Department of Botany, University of Texas at Austin, Austin, TX 78712 USA

(Received 26 January 1984)

Key Word Index—Helianthus schweimitzii, Asteraceae, sunflowers, sesquiterpene lactones, heliangolides, furanoheliangolides, budlein A, Δ^{4-15} -isoatripliciolide tiglate

Abstract—The two furanoheliangolides budlein A and a new compound, Δ^{4} 15-isoatripliciolide tiglate, were isolated from the hexaploid sunflower *Helianthus schweinitzii* Budlein A has been previously isolated from *H* angustifolius, a diploid species suggested as a possible progenitor of *H* schweinitzii

INTRODUCTION

As a part of a chemosystematic survey of Helianthus [1-6], we have studied the terpenoid chemistry of H schweinitzii T & G, a hexaploid perennial of section Divaricati, series Corona-solis [7], with a restricted range in the southeastern United States [8] Helianthus has proved to be a rich source of sesquiterpene lactones, with germacrolides and heliangolides being the most abundant skeletal types found (see ref [6] for citations to earlier work) In this paper, we report the isolation of two furanoheliangolides from a dichloromethane extract of H schweinitzii, budlein A (4) [9, 10] and a new $\Delta^{4,15}$ tiglate ester (1)

RESULTS AND DISCUSSION

Compound 1, which had a molecular formula of $C_{20}H_{22}O_6$ from high resolution mass measurements of the molecular ion, possessed an α -methylene- γ -lactone (IR 1760 cm⁻¹, ¹³C NMR δ 1681 s, ¹H NMR δ 568 d, J=3 Hz, 634 d, J=3 5 Hz) The presence of a 2-dihydro-3-furanone ring (A), a feature common to other Helianthus heliangolides [4, 11–13], was clear from IR (1690, 1585 cm¹), ¹³C NMR (2050 s, 1035 d, 1843 s) and ¹H NMR spectroscopy (δ 571 s, downfield shift of H-7 to δ 357) Other structural features included a second exomethylene function (13 C NMR δ 1210 t, ¹H NMR δ 562 d and 576 d, both J=2 Hz), a methyl group adjacent to an oxygen atom (14 H NMR 148 (3H) s) and a tiglate ester (IR 1720 cm⁻¹, MS m/z 83 (100%), typical ¹H and 13 C NMR signals [14], see Table 1)

¹H NMR spin decoupling experiments located the signal for H-7 (δ 3 57), which was coupled to complex signals at δ 4 36 and 5 21, in addition to the two H-13 doublets The signal at 5 21 (ddd, J = 2, 3, 5 5 Hz) closely resembled the signal in budlein A assigned to H-8 (5 25 ddd, J = 2, 4, 6 Hz), which is that for the proton at the point of attachment of the ester side chain Irradiation at 5 21 in compound 1 simplified two methylene double doublets at 2 28 and 2 66 to an isolated AB pattern. The signal at 4 36 was assigned to the proton at the site of lactone ring fusion. Irradiation at 4 36 altered methylene signals at 2 93 and 3 11. The proton at 3 11 was spin-coupled to two exo-methylene doublets at 5 62 and 5 76. These results are summarized in partial structure **B**.

R R¹
1* H T_{1g} †
2† OH ₁Val
3† OH Ang

R R¹
4 OH Ang
5 H Ang
6 H IBut
7 H 2-Mebut
8 OH IVal

*C-10 configuration in 1-8 is R

†Ang, angelate, 1But, 1sobutyrate, 1Val, 1sovalerate, T1g, t1glate, 2-Mebut, 2-methylbutanoate

†The 5-hydroxyl group of 2, which was mistakenly depicted as α -oriented in ref [13], should actually be β -oriented because of the magnitude of $J_{5,\,6}$ (=9 Hz) (Dr W Herz, personal communication, concurs with this revision) Thus, compound 3, whose structure was correlated with 2 [16], must also have a 5β -hydroxyl group, instead of a 5α -hydroxyl group as originally reported by Bohlmann et~al

	1 (200 MHz)	2 [13] (270 MHz)	3 [16] (400 MHz)
H			
2	571 s	5 80	5 77
5α	3 11 dddd (2, 2, 9 5, 14 5)	479 ddd (15, 15, 9)	472 ddd (15, 15, 9)
5β	2 93 br d (1 5, 14 5)	_	_
6	4 36 ddd (1 5, 5 5, 9 5)	4 31 dd (5 5, 9)	4 27 dd (5 5, 9)
7	3 57 dddd (2, 3, 3 5, 5 5)	3 64 (3, 3, 3 5, 5 5)	3 69 (3, 3, 3 5, 5 5)
8	5 21 ddd (2, 3, 5 5)	5 18 (2, 3, 5 5)	5 18 (2 5, 3, 5)
9a	2 66 dd (5 5, 15 5)	2 62 (5 5, 15)	2 67 (5, 15)
9ь	2 28 dd (3, 15 5)	2 23 (2, 15)	2,27 (2 5, 15)
13a	6 34 d (3 5)	6 35 (3 5)	6 42 (3 5)
13b	5 68 d (3)	5 73 (3)	5 74 (3)
14	1 48 (3H) s	1 43 (3H)	1 48 (3H)
15a	576 d (2)	6 13 (1 5)	6 12 (1 5)
15b	5 62 d (2)	5 93 (1 5)	5 92 (1 5)
3′	6 68 qq (1 5, 7)		_
4'	1 77 (3H) dq (7, 1 5)		
5′	171 (3H) br s (15, 15)	_	

Table 1 ¹H NMR spectra of compounds 1-3 (CDCl₃, TMS as int standard)*

Joining this spin system (B) to the dihydrofuranone moiety and attaching the methyl group to the furan ring gave the general formula 1 (without stereochemistry) assuming that the lactone ring was closed to C-6 with the side chain at C-8 as in budlein A (4) A UV absorption at 269 nm supported the extended conjugation of the furanone system [15] Compound 1, therefore, appeared

B

to be the 5-deoxy analogue of 2 [13] and 3 [16] with a C-8 tiglate side chain

The ¹H NMR spectrum of 1 closely corresponded to those of 2 and 3 (see Table 1) when allowance was made for the differences in the side chains and for the lack of a 5-hydroxyl group in 1 This correspondence helped confirm that formula 1 was correct and was taken as evidence that the stereochemistry of this compound was the same as that of 2 and 3 at C-6, C-7, C-8 and C-10 The data obtained for 1 were somewhat similar to those for the $\Delta^{4, 15}$ sesquiterpene lactones of the goyazensolide series [17-19], which are dihydrofuranone-containing heliangolides with a 6\alpha-side chain and the lactone ring closed to C-8 However, comparison of the ¹HNMR and ¹³C NMR spectral data of 1 with those of compounds of the goyazensolide series revealed clear differences, particularly in the chemical shift of H-8 and the $J_{8.9}$ values, showing that 1 was not a member of this group

Furanoheliangolides, which are common constituents of many genera in the Asteraceae (e.g. Calea, Eremanthus, Lychnophora, Viguiera [20]), have also been reported from five other species of Helianthus H angustifolius (4) [4], H ciliaris (6) [11], H grosseserratus (2, 8) [13], H lehmannii (7) [12] (now placed in the genus Helianthopsis [21]) and H nuttallii subsp nuttallii (5) [Lee, E, Gershenzon, J and Mabry, T J, unpublished results] Helianthus grosseserratus, H nuttallii and H schweinitzii are all members of series Corona-solis [7]

Four diploid species of Helianthus have been suggested as possible progenitors of the hexaploid H schweinitzii [8] Two of these have been previously chemically investigated H giganteus, from which no sesquiterpene lactones were reported [22],* and H angustifolius, which, like H schweinitzii, was shown to contain budlein A [4] Thus, H schweinitzii may have originated from a hybridization event involving H angustifolius Interestingly, data on the distribution of flavonoids in Helianthus provide

^{*}Numbers in parentheses are coupling constants in Hz. Multiplicatives for 2 and 3 are similar to those of 1, except as noted Data for 2 and 3 are from the lit refs indicated, except that, as mentioned in the footnotes to the structures, the configurations at C-5 have been revised Signals of the side chain protons in 2 and 3 have been omitted

^{*}Sesquiterpene lactones have recently been reported from *H* giganteus See Melek, F R, Ahmed, A A, Gershenzon, J and Mabry, T J (1984) *Phytochemistry* 23, 2573

additional support for this possibility Helianthus schweinitzii is the only species of series Corona-solis which produces hymenoxin [23] This unusual flavone, which has both 6- and 8-methoxylation, has also been isolated from H angustifolius [24]

EXPERIMENTAL

Leaves of H schweinitzu were collected at two sites in southeastern North Carolina (Bladen Co NE of Lake Waccamaw post office- J G #58, #150, and Columbus Co SE of Chadbourn- J G #57, vouchers on deposit at the Herbarium of the University of Texas) and from plants transplanted from these two sites to the US Dept of Agriculture research facility, Bushland, Texas (C E Rogers and T E Thompson, #849, #850) Material from all locations had identical TLC patterns and was combined (725 g) and washed with CH₂Cl₂ for 5 min Intact rather than ground leaves were extracted since, in many species of Helianthus, sesquiterpene lactones appear to be localized in surface glands [Kreitner, G, Gershenzon, J and Mabry, T J, unpublished results] and a rapid surface wash has been shown to give a greater absolute yield of sesquiterpene lactones and reduced amounts of other plant constituents than does an extraction of ground material. The wash was worked up in the usual manner [25]

The resulting crude syrup (6 7 g) was separated on a silica gel column (150 g) eluted with a CH₂Cl₂-iso-PrOH gradient, initiated with 1% iso-PrOH Twenty-four fractions of 500 ml each were collected Fractions 2-3 (1% iso-PrOH) were purified by prep TLC (silica gel, 2 mm, CH₂Cl₂-iso-PrOH, 15 1) to give 80 mg of crystalline 1 Fractions 8-10 (2% iso-PrOH) were subjected to prep TLC (toluene-EtOAc, 1 1) to give 650 mg of 4 as an oil that, when triturated with iso-Pr₂O, gave 480 mg of powdery crystals A portion of these was recrystallized from iso-Pr₂O-Me₂CO to give 100 mg of colourless needles

 Δ^{4-15} -Isoatripliciolide tiglate (1) Mp 150° UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε) 215 (400), 268 (352), IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹ 1760 (lactone>C=O), 1720 (side chain >C=O), 1690 (unsaturated ketone), 1670, 1645, 1585 (RC=COR), 1250, 1205, 1140, 1110, 1070, 995, 965, 915, 885, 815, MS (probe) 70 eV, m/z (rel int) 358 $[M]^+$ (5) $C_{20}H_{22}O_6$ (HRMS 358 1414 found, 358 1416 calc), 314 $[M - CO_2]^+$ (1), 275 $[M - C_5H_7O]^+$ (1) α -cleavage of side chain, 259 $[M-C_5H_7O_2]^+$ (2) cleavage of side chain at ether oxygen, 213 (3), 171 (4), 149 (8), 129 (8) 97 (16), 83 $[C_5H_7O]^+$ (100) side chain acylium ion, 69 (38), 55 $[83-CO]^+$ (73), $^{13}CNMR$ (22 6 MHz, CDC1₃, TMS as int standard) 205 0 (s, C-1), 103 5 (d, C-2), 184 3 (s, C-3), 136 3 (s, C-4), 41 9 (t, C-5), 77 5 (d, C-6), 51 3 (d, C-7), 73 9 (d, C-8), 43 3 (t, C-9), 88 6 (s, C-10), 139 4 (s, C-11), 168 1 (s, C-12), 122 1 (t, C-13), 22 2 (q, C-14), 121 0 (t, C-15), 166 2 (s, C-1'), 127 4 (s, C-2'), 139 0 (d, C-3'), 14 4 (q, C-4'), 11 7 (q, C-5') Interchangeable assignments C-4 and C-11, C-13 and C-15 Assignments made using off-resonance decoupling experiments and model compounds [13, 15, 17] Assignments for C-5, C-6, C-8 and C-9 made by single-frequency off-resonance decoupling experiments

Budlein A (4) Mp 110-112° (iso-Pr₂O-Me₂CO) (lit 106-108° from same solvent [9], see also ref [4]) Spectral data were very

similar to those in the literature [4, 9] and identical to those obtained from an authentic specimen

Acknowledgements—We thank Drs C E Rogers, G A Seiler and T E Thompson for providing plant material, M Leidig for MS measurements, Dr B A Shoulders for high field ¹H NMR and ¹³C NMR measurements, Dr A Romo de Vivar for a sample of budlein A and E Stewart for comments on the manuscript Financial support was provided by the Sunflower Association of America, the National Science Foundation (pre-doctoral fellowship to JG), the National Institutes of Health (grant HDO-4488 to TJM) and the Robert A Welch Foundation (grant F-130 to TJM)

REFERENCES

- 1 Ohno, N and Mabry, T J (1979) Phytochemistry 18, 1003
- Ohno, N, Mabry, T J, Zabel, V and Watson, W H (1979) Phytochemistry 18, 1687
- 3 Ohno, N and Mabry, T J (1980) Phytochemistry 19, 609
- 4 Ohno, N, Gershenzon, J, Neuman, P and Mabry, T J (1981) Phytochemistry 20, 2393
- 5 Watanabe, K., Ohno, N., Yoshioka, H., Gershenzon, J. and Mabry, T. J. (1982) Phytochemistry 21, 709
- 6 Gershenzon, J and Mabry, T J (1984) Phytochemistry 23, 1959
- 7 Schilling, E E and Heiser, C B (1981) Taxon 30, 393
- 8 Heiser, C B, Jr (1969) Mem Torr Bot Club 22, 1
- 9 Romo de Vivar, A, Guerrero, C, Diaz, E, Bratoeff, E A and Jimenez, L (1976) Phytochemistry 15, 525
- 10 Delgado, G, Romo de Vivar, A and Herz, W (1982) Phytochemistry 21, 1305
- 11 Ortega, A, Romo de Vivar, A, Diaz, E and Romo, J (1970) Rev Latinoam Quim 1, 81
- 12 Bohlmann, F and Dutta, L N (1979) Phytochemistry 18, 676
- 13 Herz, W and Kumar, N (1981) Phytochemistry 20, 99
- 14 Herz, W and Kulanthaivel, P (1983) Phytochemistry 22, 715
- 15 Bevelle, C A, Handy, G A, Segal, R A, Cordell, G A and Farnsworth, N R (1981) Phytochemistry 20, 1605
- 16 Bohlmann, F, Mathur, R, Jakupovic, J, Gupta, R K, King, R M and Robinson, H (1982) Phytochemistry 21, 2045
- 17 Vichnewski, W, Sarti, S J, Gilbert, B and Herz, W (1976) Phytochemistry 15, 191
- 18 Bohlmann, F, Zdero, C, Robinson, H and King, R M (1981) Phytochemistry 20, 731
- 19 Bohlmann, F, Zdero, C, Robinson, H and King, R M (1982) Phytochemistry 21, 1087
- 20 Seaman, F C (1982) Bot Rev 48, 121
- 21 Robinson, H (1979) Phytologia 44, 257
- 22 Bohlmann, F, Jakupovic, J, King, R M and Robinson, H (1980) Phytochemistry 19, 863
- 23 Schilling, E E and Mabry, T J (1981) Biochem Syst Ecol 9, 161
- 24 Waddell, T G (1973) Phytochemistry 12, 2061
- 25 Mabry, T J, Miller, H E, Kagan, H B and Renold, W (1966) Tetrahedron 22, 1139